66 research outputs found

    The Influence of Institutional and Conductive Aspects on Entrepreneurial Innovation: Evidence from GEM Data

    Get PDF
    YesPurpose – The main purpose of this study is to improve the understanding of how different aspects of the national institutional environment may influence the level of innovative entrepreneurial activity across countries. Several institutional and conductive factors affecting a country’s capacity to support innovative entrepreneurship is explored. Design/methodology/approach – Institutional theory is used to examine the national regulatory, normative, cognitive, and conducive aspects that measure a country's ability to support innovative entrepreneurship. A cross-national institutional profile is constructed to validate an entrepreneurial innovation model. The impact of country-level national institutions on innovative entrepreneurial activity as measured by Global Entrepreneurship Monitor (GEM) data is assessed through structural equation modeling (SEM). Findings – Knowledge about the influence of specific institutional aspects on innovative entrepreneurship, and hence of institutional structures within and across countries, is enhanced. For new innovative enterprises, conductive and regulatory aspects seem to matter most. All conductive factors have a significant and positive impact on entrepreneurial activity rates. Research limitations/implications – Results could support policy makers and practitioners in evaluating government policies’ effect on innovative entrepreneurship. Interventions should target both individual attributes and context. Future research could include longitudinal designs to measure the direction of causality. Practical implications – Aspects such as regulatory institutions, and conductive factors such as ICT use and technology adoption, are important for innovation entrepreneurship development.The full text will be made available when the article is officially published

    Altering an Artificial Gagpolnef Polyprotein and Mode of ENV Co-Administration Affects the Immunogenicity of a Clade C HIV DNA Vaccine

    Get PDF
    HIV-1 candidate vaccines expressing an artificial polyprotein comprising Gag, Pol and Nef (GPN) and a secreted envelope protein (Env) were shown in recent Phase I/II clinical trials to induce high levels of polyfunctional T cell responses; however, Env-specific responses clearly exceeded those against Gag. Here, we assess the impact of the GPN immunogen design and variations in the formulation and vaccination regimen of a combined GPN/Env DNA vaccine on the T cell responses against the various HIV proteins. Subtle modifications were introduced into the GPN gene to increase Gag expression, modify the expression ratio of Gag to PolNef and support budding of virus-like particles. I.m. administration of the various DNA constructs into BALB/c mice resulted in an up to 10-fold increase in Gag- and Pol-specific IFNγ+ CD8+ T cells compared to GPN. Co-administering Env with Gag or GPN derivatives largely abrogated Gag-specific responses. Alterations in the molar ratio of the DNA vaccines and spatially or temporally separated administration induced more balanced T cell responses. Whereas forced co-expression of Gag and Env from one plasmid induced predominantly Env-specific T cells responses, deletion of the only H-2d T cell epitope in Env allowed increased levels of Gag-specific T cells, suggesting competition at an epitope level. Our data demonstrate that the biochemical properties of an artificial polyprotein clearly influence the levels of antigen-specific T cells, and variations in formulation and schedule can overcome competition for the induction of these responses. These results are guiding the design of ongoing pre-clinical and clinical trials

    Opposite Effects of HIV-1 p17 Variants on PTEN Activation and Cell Growth in B Cells

    Get PDF
    The HIV-1 matrix protein p17 is a structural protein that can act in the extracellular environment to deregulate several functions of immune cells, through the interaction of its NH2-terminal region with a cellular surface receptor (p17R). The intracellular events triggered by p17/p17R interaction have been not completely characterized yet. In this study we analyze the signal transduction pathways induced by p17/p17R interaction and show that in Raji cells, a human B cell line stably expressing p17R on its surface, p17 induces a transient activation of the transcriptional factor AP-1. Moreover, it was found to upregulate pERK1/2 and downregulate pAkt, which are the major intracellular signalling components involved in AP-1 activation. These effects are mediated by the COOH-terminal region of p17, which displays the capability of keeping PTEN, a phosphatase that regulates the PI3K/Akt pathway, in an active state through the serin/threonin (Ser/Thr) kinase ROCK. Indeed, the COOH-terminal truncated form of p17 (p17Δ36) induced activation of the PI3K/Akt pathway by maintaining PTEN in an inactive phosphorylated form. Interestingly, we show that among different p17s, a variant derived from a Ugandan HIV-1 strain, named S75X, triggers an activation of PI3K/Akt signalling pathway, and leads to an increased B cell proliferation and malignant transformation. In summary, this study shows the role of the COOH-terminal region in modulating the p17 signalling pathways so highlighting the complexity of p17 binding to and signalling through its receptor(s). Moreover, it provides the first evidence on the presence of a p17 natural variant mimicking the p17Δ36-induced signalling in B cells and displaying the capacity of promoting B cell growth and tumorigenesis

    HIV Protein Sequence Hotspots for Crosstalk with Host Hub Proteins

    Get PDF
    HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2). We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes

    Sequence- and Interactome-Based Prediction of Viral Protein Hotspots Targeting Host Proteins: A Case Study for HIV Nef

    Get PDF
    Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk

    Perturbation of Host Nuclear Membrane Component RanBP2 Impairs the Nuclear Import of Human Immunodeficiency Virus -1 Preintegration Complex (DNA)

    Get PDF
    HIV-1 is a RNA virus that requires an intermediate DNA phase via reverse transcription (RT) step in order to establish productive infection in the host cell. The nascent viral DNA synthesized via RT step and the preformed viral proteins are assembled into pre-integration complex (PIC) in the cell cytoplasm. To integrate the viral DNA into the host genome, the PIC must cross cell nuclear membrane through the nuclear pore complex (NPC). RanBP2, also known as Nup358, is a major component of the cytoplasmic filaments that emanates from the nuclear pore complex and has been implicated in various nucleo-cytoplasmic transport pathways including those for HIV Rev-protein. We sought to investigate the role of RanBP2 in HIV-1 replication. In our investigations, we found that RanBP2 depletion via RNAi resulted in profound inhibition of HIV-1 infection and played a pivotal role in the nuclear entry of HIV DNA. More precisely, there was a profound decline in 2-LTR DNA copies (marker for nuclear entry of HIV DNA) and an unchanged level of viral reverse transcription in RanBP2-ablated HIV-infected cells compared to RanBP3-depleted or non-specific siRNA controls. We further demonstrated that the function of Rev was unaffected in RanBP2-depleted latently HIV infected cells (reactivated). We also serendipitously found that RanBP2 depletion inhibited the global ectopic gene expression. In conclusion, RanBP2 is a host factor that is involved in the nuclear import of HIV-1 PIC (DNA), but is not critical to the nuclear export of the viral mRNAs or nucleo-cytoplasmic shuttling of Rev. RanBP2 could be a potential target for efficient inhibition of HIV

    Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Kaposi's sarcoma (KS), hemangioma, and other angioproliferative diseases are highly prevalent in HIV-infected individuals. While KS is etiologically linked to the human herpesvirus-8 (HHV8) infection, HIV-patients without HHV-8 and those infected with unrelated viruses also develop angiopathies. Further, HIV-Tat can activate protein-tyrosine-kinase (PTK-activity) of the vascular endothelial growth factor receptor involved in stimulating angiogenic processes. However, Tat by itself or HHV8-genes alone cannot induce angiogenesis <it>in vivo </it>unless specific proteins/enzymes are produced synchronously by different cell-types. We therefore tested a hypothesis that <it>chronic </it>HIV-<it>replication in non-endothelial cells </it>may produce novel factors that provoke angiogenic pathways.</p> <p>Methods</p> <p>Genome-wide proteins from HIV-infected and uninfected T-lymphocytes were tested by subtractive proteomics analyses at various stages of virus and cell growth <it>in vitro </it>over a period of two years. Several thousand differentially regulated proteins were identified by mass spectrometry (MS) and >200 proteins were confirmed in multiple gels. Each protein was scrutinized extensively by protein-interaction-pathways, bioinformatics, and statistical analyses.</p> <p>Results</p> <p>By functional categorization, 31 proteins were identified to be associated with various signaling events involved in angiogenesis. 88% proteins were located in the plasma membrane or extracellular matrix and >90% were found to be essential for regeneration, neovascularization and angiogenic processes during embryonic development.</p> <p>Conclusion</p> <p>Chronic HIV-infection of T-cells produces membrane receptor-PTKs, serine-threonine kinases, growth factors, adhesion molecules and many diffusible signaling proteins that have not been previously reported in HIV-infected cells. Each protein has been associated with endothelial cell-growth, morphogenesis, sprouting, microvessel-formation and other biological processes involved in angiogenesis (p = 10<sup>-4 </sup>to 10<sup>-12</sup>). Bioinformatics analyses suggest that overproduction of PTKs and other kinases in HIV-infected cells has <it>suppressed </it>VEGF/VEGFR-PTK expression and promoted <it>VEGFR-independent </it>pathways. This unique mechanism is similar to that observed in neovascularization and angiogenesis during embryogenesis. Validation of clinically relevant proteins by gene-silencing and translational studies <it>in vivo </it>would identify specific targets that can be used for early diagnosis of angiogenic disorders and future development of inhibitors of angiopathies. This is the first comprehensive study to demonstrate that HIV-infection alone, without any co-infection or treatment, can induce numerous "embryonic" proteins and kinases capable of generating novel <it>VEGF-independent </it>angiogenic pathways.</p
    corecore